Nuclear modification factors for high transverse momentum pions and protons at LHC

W. Liu, B. W. Zhang,¹ and C. M. Ko

¹Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

Including conversions between quark and gluon jets in a quark-gluon plasma (QGP) via both elastic qg \leftrightarrow gq and inelastic qq \leftrightarrow gg reactions, we have predicted the nuclear modification factor for both protons and pions as well as their ratios at large transverse momenta in central Pb+Pb collisions at s $\frac{1}{NN}$ = 5.5 TeV [1]. As shown in the left window of Fig. 1, the nuclear modification factor R_{AA} for large transverse momenta pions increases from 0.18 at p_T =5 GeV to 0.4 at p_T = 40 GeV due to a smaller drag coefficient at large transverse momenta. The R_{AA} of protons has a similar behavior, but its value is smaller because of stronger suppression of gluon than quark jets. The resulting p/ π^+ ratio shown by the solid line in the right window of Fig. 1 approaches that in p+p collisions at same energy when the transverse momenta become very large. At lower transverse momenta, the p/ π_+ ratio remains, however, smaller than that in p+p collisions, which is different from that in heavy ion collisions at RHIC as a result of the larger ratio of gluon to quark jets at LHC. Without conversions between quark and gluon jets, the p/ π^+ ratio decreases by a factor of two as shown by the dotted line.

Figure 1. Left window: Nuclear modification factor R_{AA} for π^+ (solid line) and proton (dashed line) in central Pb+Pb collisions at s $\frac{1}{N}$ = 5.5 TeV. Right window: p/π^+ ratio without (dotted lines) or with jet conversions (solid lines). Dashed lines correspond to p+p collisions at same energy.

[1] N. Armesto et al., J. Phys. G 35, 054001 (2008).